
UCRL-CONF-209424

A Computational Model with Experimental
Validation for DNA Flow in Microchannels

A. Nonaka, S. Gulati, D. Trebotich, G. H. Miller, S.
J. Muller, D. Liepmann

February 4, 2005

Nanotech 2005
Anaheim, CA, United States
May 8, 2005 through May 12, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



A Computational Model with Experimental Validation for DNA Flow
in Microchannels

A. Nonaka*‡, S. Gulati††, D. Trebotich‡, G. H. Miller*, S. J. Muller†† and D. Liepmann††

*University of California, Davis, Department of Applied Science
One Shields Ave., Davis, CA, USA, 95616-8254, ajnonaka@ucdavis.edu

‡ Lawrence Livermore National Laboratory, Livermore, CA, USA
†† University of California, Berkeley, CA, USA

ABSTRACT

We compare a computational model to experimental
data for DNA-laden flow in microchannels. The purpose
of this work in progress is to validate a new numeri-
cal algorithm for viscoelastic flow using the Oldroyd-B
model. Our numerical approach is a stable and conver-
gent polymeric stress-splitting scheme for viscoelasticity.
We treat the hyperbolic part of the equations of motion
with an embedded boundary method for solving hyper-
bolic conservation laws in irregular domains. We enforce
incompressibility and evolve velocity and pressure with
a projection method. Our experiments are performed
using epifluorescent microscopy and digital particle im-
age velocimetry to measure velocity fields and track the
conformation of biological macromolecules. We present
results comparing velocity fields and the observations
of computed fluid stress on molecular conformation in
various microchannels.

Keywords: viscoelasticity, Oldroyd-B, hyperbolic con-
servation laws, embedded boundaries, digital particle
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1 INTRODUCTION

We consider flow of an incompressible viscoelastic
fluid at the microscale. Viscoelasticity is an appropriate
model for particle-laden biological fluids consisting of
macromolecules including DNA. We begin by summariz-
ing our equations of motion, algorithm and experimental
techniques followed by a comparison of computational
and experimental data. Included are data for several
contraction geometries found in bioMEMS devices, with
a direct comparison of velocity profiles and possible ef-
fects of computed fluid stress on observed molecular de-
formation in [5].

2 EQUATIONS OF MOTION

The equations of motion are the incompressible Navier-
Stokes equations coupled to the Oldroyd-B polymeric
stress equation:

ρ

(

∂u
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Here, ρ is the fluid density, u is the velocity, p is the
isotropic pressure, τ is the fluid stress, λ is the relax-
ation time and µs and µp are the solvent and polymeric
contributions to the total viscosity.

3 ALGORITHM

We approach the problem numerically with a poly-
meric stress splitting scheme which is stable and conver-
gent for the full range of viscoelastic flows [1]. Here the
equations of motion have been made suitable for the ap-
proach in [3] for solving hyperbolic conservations laws
on irregular domains. In order to enforce the incom-
pressibility restraint, we use the higher-order projection
method described in [2].

We begin by intersecting our domain with a cell-
centered Cartesian grid. In order to obtain a high order
approximation for our fluxes, we first cast the equations
in linear advection form:

∂W

∂t
+

D−1
∑

i=0

Ai(W )
∂W

∂xi

= SW , (4)

where W is the vector of primitive variables, D is the
dimensionality of the problem, Ai are matrices and SW

is the primitive source term vector. We then employ
Taylor series and characteristic tracing to obtain face-
centered, time-centered values for the primitive vari-
ables. To update the cells, we use the conservation form:

∂U

∂t
+∇ · F (U) = SU , (5)

where U is the vector of conserved variables, F is the
vector of fluxes and SU is the conservative source term
vector. We project the velocity field in order to enforce
the incompressibility constraint.



Figure 1: Embedded boundary representation of con-
traction/expansion device. Fluid enters/exits device
through tubes attached to triangular reservoirs at in-
dicated locations.

To handle irregular geometries, we use the embedded
boundary method, which is a volume of fluid method
that takes a “cookie cutter” approach to irregular do-
main boundaries on Cartesian grids. Cut cells exist near
boundaries and are treated with advanced discretization
stencils [3], [4].

4 EXPERIMENTS

To obtain velocity fields in components of bioMEMS
devices, we use the digital particle image velocime-
try (DPIV) technique described by Devasenathipathy
et al. [6]. DPIV combines epifluorescent microscopy,
where fluorescent seed particles are imaged at succes-
sive timesteps, and image interrogation algorithms to
calculate the velocity fields. We measure the orien-
tation and deformation of λ-DNA molecules using the
technique described in [5]. This experimental technique
involves marking the λ-DNA molecules with a fluores-
cent dye and imaging the molecules with epifluorescent
microscopy. Statistical data is obtained by tracking
molecules that pass through particular regions in the
microchannel rather than tracking individual particles.

We measure the viscosities µp and µs, and use the

Figure 2: Computed results for x-velocity field; 0 µm/s
(red) to 175µm/s (blue) and y-velocity field; -33µm/s
(red) to 33µm/s (blue) for the rounded contraction de-
vice.

Figure 3: Experimental (red with squared) vs. compu-
tational (blue with triangles) x-velocity profile compar-
ison at point “B” using 2D viscoelastic model and 3D
viscous model.

Rouse model to obtain the relaxation time:

λ =
[µ]µsM

RT
, (6)

where M is the molecular weight of λ-DNA, R is the gas
constant and T is temperature. The intrinsic viscosity,
[µ], is calculated using:

µp + µs ≈ µs(1 + [µ]c), (7)

where c is the concentration of λ-DNA in solution.
Device fabrication, imaging instrumentation and fluid
characterization are described in detail in [5].

5 RESULTS

We use the convention that the direction of positive
flow is the +x direction while the width and depth are
the y and z direction, respectively. All velocity fields
are measured at the median depth of the channel. Un-
less otherwise specified, all computations are performed
using a 2D viscoelastic model.



5.1 Rounded Contraction Velocity

Profiles

Our first geometry is the rounded contraction geom-
etry used in [5]. Two triangular reservoirs are connected
by a narrow rectangular channel with length L = 8mm.
The depth of the entire device is d = 60µm and the
width of the narrow channel is w = 330µm. See Figure
1 for an embedded boundary representation of this ge-
ometry. We compute velocity fields in the region before
and after the contraction. The experimentally obtained
parameters are: Q = 10µL/hr, ρ = 1g/mL, µs = 25.0cP,
µp = 0.975cP and λ = 0.416s.

The computed x and y velocity fields are shown in
Figure 2. In Figure 3 we compare x-velocity profiles for
computational and experimental data at the contraction
cross section. We note that our experiment yields a
“top-hat” x-velocity profile at the contraction, yet our
2D computations do not. Using the same contraction
geometry, we have previously performed computations
for viscous flow in both 2D and 3D. We only see evidence
of a top-hat velocity profile with a 3D model, as shown
in Figure 3. We believe the large channel width-to-depth
ratio is the cause of this phenomena, and therefore a 2D
model cannot capture this 3D effect. An extension of
our viscoelastic model to 3D is being developed which
will investigate this phenomena.

5.2 Rounded Contraction Stress

Profiles

We now wish to examine the effect of fluid stress on
the stretching of λ-DNA molecules. We present normal
stress (τxx) and shear stress (τyx) profiles in Figure 4.
Note that due to conservation of angular momentum,
the stress tensor is symmetric, and therefore τxy = τyx.
We will compare our stress profiles with experimental
data on λ-DNA molecule conformation.

The effect of normal stress stretching is represented
by τxx. In this geometry, we predict normal stress down

Figure 4: Computed results for normal stress field; -
10mg/(cm-s2) (red) to 61mg/(cm-s2) (blue) and shear
stress field; -48mg/(cm-s2) (red) to 48mg/(cm-s2) (blue)
for the rounded contraction device.

Figure 5: Computed results for x-velocity field; 0µm/s
(red) to 275µm/s (blue) and y-velocity field; -45µm/s
(red) to 45µm/s (blue) for the abrupt contraction ge-
ometry.

the centerline as the fluid accelerates inside the contrac-
tion and near the walls in the contracted channel. There
is no normal stress component down the centerline in
the contracted channel. The images in [5] support this
centerline normal stress profile, as the particles stretch
from their original position to the increased lengths at
the contraction, and then relax back to their original
configuration as they pass downstream.

It has been observed in [5] that, within the contrac-
tion, the particles near walls appear more stretched out
than the particles near the centerline. Our computations
indicate that the magnitude of both shear and normal
stress is higher near wall locations than near the cen-
terline. Further investigation is required to determine
the relative influence of each type of stress near the wall
locations on molecular stretching.

5.3 Abrupt Contraction Velocity

Profiles

Our second geometry is an abrupt contraction ge-
ometry. The depth of the device is d = 100µm, the
pre-contraction width is W = 100µm and the post-
contraction width is w = 60µm. The experimentally
obtained parameters are: Q = 10µL/hr, ρ = 1g/mL, µs

= 25.0cP, µp = 0.975cP and λ = 0.416s.

The computed x and y velocity fields are shown in
Figure 5. We compare x-velocity profiles for computa-
tional and experimental data at cross sections located
at 150µm before and 150µm after the contraction. Our



Figure 6: Experimental (red with squares) vs. compu-
tational (blue with triangles) x-velocity comparison at
150µm prior to and 150µm post contraction.

model compares well with the experimental results for
both locations.

6 CONCLUSION

We provide comparison between computation and
experiment for non-Newtonian, viscoelastic flow in ir-
regular microdevice geometries. The velocity fields com-
pare well, but a 3D model is required to capture certain
experimentally observed effects, especially where large
width to depth ratios exist. The stress fields are consis-
tent with experimental observations for macromolecular
conformation. This work provides the foundation for
computing fluid flows in more complicated microdevice
components as well as biological systems. Future work
involves the inclusion of a particle representation to our
continuum model, as well as an extension to adaptive
mesh refinement (AMR), where we locally increase the
spatial resolution in regions of high gradients.
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